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Matériaux : de la chimie aux propriétés – Constantes et Équations 

    Constantes et Valeurs 
Vitesse de la lumière   c     3 x 108 m/s 
Accélération gravitationnelle  g   9.8 m/s2 
Constante de Planck   h    6,626 × 10-34 J.s (et ℏ = !

"#
 ) 

Constante de Boltzmann   k  ou kB   1,38 × 10-23 J/K 
Nombre d'Avogadro    Na     6.022 × 1023 particules mol-1 
Charge élémentaire    e   1,6× 10-19 C  (et 1eV vaut cela en J) 
Constante des gaz parfaits   R = Nak =  8,314 J K-1 mol-1  
        0,08205 L atm mol-1 K-1 
        8,3145 kPa L mol-1 K-1 
        8.314 x 10-2 L bar K-1mol-1 
Volume molaire d'un    Vmol = R × 273,15/Po= 22,4 L mol-1 

gaz parfait, po = 1 atm, T = 0°C    
Unité de masse atomique   u = 10-3/Na =  1,66 × 10-27 kg  
Constante de Faraday    F = Na · e =   96 485 C mol-1  
Constante de Rydberg   R¥ = meμo

2e4c3/(8h3) =  1,097 × 107 m-1  
Constant énergétique de Rydberg RH = h c R¥  13,6 eV 
Masse du proton    mp =  1,672  × 10-27 kg =  1 u 
Masse du neutron    mn =  1,674 × 10-27 kg =  1 u 
Masse de l'électron   me =  9,1 × 10-31 kg =  5,485 × 10-4 u 
 
Unités: Joule: 1 J= 1 kg⋅m2⋅s−2 ; Watt: 1W= 1 J. s-1 ; Coulomb: 1C= 1A.s ; Volt: 1V= 1 J C-1; 
Pascal: 1 Pa= 1 Nm-2;  
 
 
Structure atomique (constantes données ci-dessus) 
Energie d’un photon de longueur d'onde l : E = ℎ	 !

"
 = hν  [J] 

Energie des niveaux n de l’atome d’hydrogène:  𝐸# =	
$%&.(	*+

#!
     (n = 1, 2, 3, …) 

 
Rydberg pour l’Hydrogène     l: longueur d’onde [m] 
 
Equation de Broglie, corps de masse m, vitesse v: 
Incertitude de Heisenberg 
 
Loi de gaz parfait : pV = nRT 

Potentiel de Lennard Jones, Energie potentielle : 𝐸 = 	 𝜀, '(
-"
-
)
%.
− 2(-"

-
)
(
, avec e0 : énergie de 

liaison[eV] et r0 : distance à l'équilibre [m] 
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 Thermodynamique  
Enthalpie H = U + pV [J.mol-1] (U : énergie interne, p: pression en Pa, V : volume en m3/mol) 

Entropie : classique : ∆𝑆 = 	/#$%
0
	 [J.mol-1. K-1]   

Variation de l’entropie de l’Univers : DSunivers = DSsys + DSenv = DSr0 + $∆2#
"

0
 

La capacité calorifique spécifique, à p=const. : 𝑐3 =	
%
4
	52
50

 [J.kg-1.K-1] 
Variation de l’enthalpie libre (énergie de Gibbs) : DG = DH - TDS= -TDSunivers 
Variation standard de 
 - l'entropie de réaction  
 
 - l'enthalpie de réaction 
 

- l'enthalpie libre de réaction 
 
DGf

0, DHf
0 et S0 mesurées dans des conditions standards et tabulées 

avec ni, nj les coefficients stœchiométriques pour les produits et réactifs respectivement 
Variation d’enthalpie libre dans une réaction chimique :  DGr0 = DHr0 - TDSr0 
Relation entre DGr0 et DGr: DGr = DGr0 + RT lnQ avec Q quotient réactionnel 
Relation entre DGr0 et K (constante d’équilibre) : DGr0 = - RT ln K 

 
 

Equilibre chimique  
aA  + bB  cC  +  dD, la constante d’équilibre: concentrations à l'équilibre 𝐾 =	 [7]

&[9]'

[:]([;])
 

    Quotient réactionnel     𝑄 =	 [7]
&[9]'

[:]([;])
   (concentrations en fonction du temps) 

 
Les acides et bases   
HA + H2O  H3O+  + A- B + H2O BH+  + OH- 
Constante de dissociation de l’eau :  Ke = [H3O+] [OH-] M-2= 1,0 x 10-14 ( à 25°C) 
Expression de l’échelle de pH et pOH : pH = -log[H3O+] pOH = -log[OH-] 
Relation entre pH et pOH :    pH  +  pOH = 14,00 ( à 25°C) 
Constante d’acidité  𝐾< =	

[2*=+]	[:,]
[2:]

    Constante de basicité  𝐾> =	
[;2+]	[=2,]

[;]
 

Relation : KaKb = Ke  
pH d’une solution d’acide fort (Ka >>1) : pH = -log ([H+]/1M) =-log (ca/1M)  
ca = [HA]0= [H+] 

pH d’une solution aqueuse diluée d’un acide fort :  [𝐻?] = 	
!(?@!(!?AB$

.
 quand ca < 10-6 

 

pH d’une solution d’un acide faible (Ka <<1) : général :  
  Si [HA]0  > 100 Ka:  x = [H+] = 5𝐾<𝑐< 𝑝𝐻 = 	 1 26 	(𝑝𝐾& − log[𝐻𝐴]') 
pOH d’une solution d’une base forte (Kb >>1) : pOH = -log(cb)  cb = [B]0 

pOH d’une solution aqueuse diluée d’une base forte :[𝑂𝐻]$ =	
!)?@!)

!?AB$

.
  quand cb < 10-6 

pH d’une solution d’une base faible (Kb<<1): x = [OH-] : 𝑔é𝑛é𝑟𝑎𝑙:	𝑥 =
$B)?@B)!?AB)!)

.
 

Si [B]0  > 100 Kb:  x = [OH-] = 5𝐾>𝑐> 𝑝𝐻 = 	 1 2A 	(14 + 𝑝𝐾< + log[𝐵],) 
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L’électrochimie 
Equation pour le potentiel de pile :  DE0pile = E0 (cathode) - E0 (anode) [V] 
Relation DGr0 entre DE0pile et :    DGr0 = - z FDE0pile  [J.mol-1] (car [J]=[C.V]) 
Potentiel standard et constante équilibre :  ln𝐾 = 	 C	D	∆E

"

F0
 

L’équation de Nernst :  ∆𝐸 = 	∆𝐸, −	F0
CD
ln 𝑄 

Loi de Faraday : 𝑛 = 	 G	H
C	D

 avec n = nombre de moles du produit formé ; I = intensité de courant [A];  
F : constante de Faraday ; z = nombre d’électrons transférés 

 
Potentiel standard (page suivante) E0, donné par mole d'électrons échangés, et 1 
concentration de 1mol/l,1 atm 
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Matériaux – Principales relations et équations 
 

01.2024 

GENERALITES – LIAISONS (voir formulaire chimie) 
Principe de Pauli : un set (n, l, ml, ms) correspond à 1 seul e-  
Règle de Hund :  sur les orbitales (n, l), on fixe d’abord ms avant de varier ml 

 

DIFFRACTION (q est l'angle, l la longueur d'onde du faisceau lumineux, et n un entier). 
Loi de Bragg :2dhkl sinq =nl [m]avec, pour un réseau cubique, la distance entre les plans (h,k,l) : dhkl = a(h2+k2+l2)-1/2 
 
ELASTICITE – VISCOSITE (Fx force selon la direction x, Sx section normale à la direction x, Sy section normale à la direction y) 

Contrainte en traction (compression uniaxiale) [Pa] : sxx=
Fx
Sx

  Contrainte de cisaillement [Pa] :𝜎!" =	
#!
$"
	 

Déformation [-] traction/compression : 𝜀!! =
%&#
&$#

, 𝜀"" =
%&%
&$%

, 𝜀'' =
%&&
&$&

 Cisaillement : 𝜀!" =
(
)
𝛾 = (

)
%&#
&$%

 

Module élastique E [Pa] : sxx=E 𝜀!! Coefficient de Poisson [-] : 𝜈 = *+%%
+##

= *+&&
+##

 

Module de cisaillement G [Pa] : 𝜎!" = G 2𝜀!" = G %&#
&$%

 Pour un solide isotrope : G=(
)

E
(,-

 

Coefficient de compressibilité K[Pa]  : K =	−V0
%p
%V

 Pour un solide isotrope : K= (
.

E
(*)-

 

Viscosité µ d’un liquide [Pa.s ] : 𝜎!" = 𝜇 /0#
/"

= 𝜇𝜀!̇" Vitesse de propagation d’une onde [m/s] : v=,𝐸/𝜌 

Densité d’énergie élastique en traction uniaxiale [J/m3=Pa] : w = (
)

E𝜀!!) =
(
)
1##'

E
 (Energie totale, multiplier par le volume V) 

Pour un potentiel de Lennard-Jones : 𝐸 = 2)+$
3$(

 Changement de volume : %V
V
= (1 − 2𝜈)𝜀!! 

PLASTICITE 

  Limite d'élasticité d’un matériau : σel ou σY [Pa]  (Métaux : σ0.2  Polymères : σ0.5) 

  Résistance maximum d’un matériau : σm [Pa] 

  Ductilité d’un matériau : εR (- ou %) 

  Déformation totale : εxx=εxx
el +εxx

pl  

 

Augmentation de limite d'élasticité due au durcissement: par solution solide , par précipités , 

par écrouissage , par taille des grains (Hall Petch) où K constantes, G module de cisaillement 

[Pa], d: différence de rayons atomiques [m], X: composition [-], b: norme du vecteur de Burgers [m], L: distance entre obstacles 

[m], rd: densité de dislocations [m-2], fg: diamètre des grains [m]. 
 
 DURETE - TENACITE 
Dureté Vickers HV [Vickers] = 1.854 4[674]

/'[99']
= 0.189 4[:]

/'[99']
 où d est la moyenne des diagonales de l’empreinte. 

Pour l'acier, HV ≅	σY[Mpa]/3 et la dureté en Mpa : H[Mpa]= 9.81 HV ≅ 3 σY 

Dureté Brinell,  où D est le diamètre de la bille et d diamètre moyen de l'empreinte. 

Facteur de concentration de contraintes Ksc=1+a(l/rsc)0.5 [-], a cst, rsc rayon de courbure;  
Facteur d’intensité de contraintes : K1 = σ0 √𝜋𝑙 [Pa m(∕)], σ0 est la contrainte appliquée, l la longueur de fissure.  

Extension de la zone plastique en avant d’une fissure : 𝑟" =
(=))'

?1%'
 [m] 

Tenacité théorique d’un matériau : K1C = ,𝐺C𝐸  avec GC=2𝛾+GCpl (𝛾	: énergie de surface ; GCpl : énergie plastique [Pa.m ou J/m2]) 

Critère de fissuration spontanée : K1≥K1C  Pour un potentiel de Lennard-Jones, énergie de surface 𝛾 = (
)
+$
3$'

 

 
FATIGUE – USURE 

Coefficients de frottements statiques [-] : μs≈
4*
4+

   (v=0)  dynamiques : μd≈
4*
4+

   (v≠ 0) 

Taux d’usure spécifique Ω[-] ∶ 	Ω = A
B

  où A est l’aire de frottement et W = volume enlevé
distance parcourue

 

Coefficient d’Archard ka [Pa-1] : Ω = A
B
= 𝑘C	𝑝 = 𝑘C 	

4+
B

   

ΔσY
SS = KSSGδ X ΔσY

P = KP
Gb
L

ΔσY
E = KEGb ρd ΔσY

HP =
KHP

φg

HB = 0.102
2F N[ ]

πD(D− D2 − d 2 ) mm2⎡⎣ ⎤⎦
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A gauche, courbe de fatigue à σmoy=0 donnant le nombre de cycles à rupture pour une 
amplitude de contrainte σa. σm est la contrainte a rupture statique, Nf le nombre de cycle 
à rupture. L’endurance du matériau σe est donnée pour une rupture à 107 cycles. 

 Lorsque σmoy≠0, on utilise la loi de Goodman, qui donne la nouvelle amplitude qui donne 
 un nombre de cycle à rupture Nf:  : σC(𝑁D, σ9E") = σCF(𝑁D) H1 −

G,-%

G,
I 

 σCFJ𝑁DK est l'amplitude pour σmoy=0 donnant Nf cycles à rupture. Lorsque des cycles 
 d’amplitudes variables sont appliquées, on utilise la règle de Miner : ∑ :.

:/.(10,.)
=1, avec Ni 

 nombre de cycles de la période i, a l'amplitude 𝜎C,I. 
 Loi de Paris : /J

/:
= 𝐴∆𝐾(9, A, m constantes, l [m] longueur de fissure et N nombre de 

 cycles, K1 facteur d'intensité de contraintes. 
PROPRIETES THERMIQUES 

Chaleur spécifique : cp= (
9
/K
/L

 [J K-1 kg-1]  Chaleur latente de transformation : L = %K
9

 [J kg-1] 

Flux thermique : jT= -k/L
/'

 [W m-2] où k est la conductivité thermique [W m-1 K-1] 

Eq. de la chaleur : M(NO)
MP

= 𝜌𝑐Q
ML
MP
= − MR2

M'
= 𝑘 M

'L
M''
		 où ML

MP
= 𝑎 M

'L
M''
		  et diffusivité  a= 6

NS3
 [m2 s-1] 

Nbre Fourier [-] : Fο=C%P%T'
   Position où T=(T1+T*)/2 est Lc1=√(a1t)  ; Effusivité: e=,𝑘𝜌𝑐Q 

Coeff. d’expansion thermique linéaire [K-1]: 𝛼 = (
&
/&
/L

          Déformation thermique [-] 𝜀!!PO =
%&
&$
= 𝛼(𝑇( − 𝑇F)  

COMPORTEMENT A HAUTE TEMPERATURE 

Coefficient de diffusion des espèces chimiques : D(T)=Do expT*UVLU   [m
2s-1],  Do, Q constantes, R constante des gaz parfaits 

Loi de la diffusion (C concentration en mol ou g/volume}: 𝑗W = -𝐷 MW
MX
	       MW

MP
= − MR4

M!
= 𝐷 M'W

M!'
	Nombre de Fourier[-] : Fο=Y%P%X'

    

DIAGRAMME DE PHASES 

Composition ou fraction molaire [-]: XA= :5
:5,:6

  Composition ou fraction massique [-]: CA= 95
95,96

 

Règle des phases de Gibbs : NDL=2+NC-NP, où : NDL : nbre de degrés de liberté ; NC : nbre de composants chimiques 

NP : nbre de phases présentes dans le système. Si P fixé, la règle devient: NDL=1+NC-NP 

Loi des leviers donnant la fraction molaire d’une phase α dans le domaine biphasé (α+β) [-]: 𝜒Z =
[67*[6$
[67*[68

 

où 𝑋\F : composition nominale en B ; 𝑋\8 : composition de la phase α en B ; 𝑋\7 : composition de la phase β en B 

OXYDATION/CORROSION 

Cinétique d’oxydation, couche dense : x2~𝐷F exp H
*U9
VL
I𝐶F𝑡 = 𝐷𝐶F𝑡  , D coeff de diffusion, C0 concentration en O2 à la surface 

Corrosion aqueuse possible si le potentiel E0 est inférieur à celui de O2+2H2O+4 e-->4 OH- 

PROPRIETES ELECTRIQUES – MAGNETIQUES  

Dipôle électrique [A s m] : p=qd  Moment magnétique orbital [A m2] : m= (
)
 q rxv 

Vecteur polarisation : P=(
]
∑ p𝒊I  [A s m-2] Vecteur aimantation : M= (

]
∑ m𝒊I  [A m-1] 

P=𝜀F𝜒_E   ( E : champ électrique [V m-1] ) ε0= 8.85x10-12 [A s V-1 m-1] et εr =(1+𝜒_), 𝜒_ 	𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡é	é𝑙𝑒𝑐𝑡𝑟𝑖𝑞𝑢𝑒[−] 

Charge d’un condensateur [Coulomb=Fahrad.V]: Q = C V avec pour un condensateur plan : C= ε0 εr 
`
/ ,  S surface et d distance plaques. 

M= 𝜒a H   (H : champ magnétique [A m-1] )  μ0=4πx10-7 [V s A-1 m-1] et μr=(1+𝜒a)	𝜒a	𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑖𝑙𝑖𝑡é	𝑚𝑎𝑔𝑛é𝑡𝑖𝑞𝑢𝑒[−] 
Induction magnétique d’un solénoïde de N spires, de longueur L et courant I : B= μ0(H+M)=μ0μr

N  I
L

 [V s m-2] 

Modèle de Drude pour la conductivité électrique : je= -neev=b:c
'd

9:
E=σeE=𝜌c*(E,  ne : densité d’électrons  

Résistance : R=re l/S, re résistivité [Wm], l longueur du fil, S section. σe est la conductivité électrique, [W-1m-1]  
 
 


